LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Deep Neuro-Cognitive Co-Evolution for Fuzzy Attribute Reduction by Quantum Leaping PSO With Nearest-Neighbor Memeplexes

Photo by timothycdykes from unsplash

Attribute reduction with many patterns and indicators has been regarded as an important approach for large-scale data mining and machine learning tasks. However, it is extremely difficult for researchers to… Click to show full abstract

Attribute reduction with many patterns and indicators has been regarded as an important approach for large-scale data mining and machine learning tasks. However, it is extremely difficult for researchers to inadequately extract knowledge and insights from multiple overlapping and interdependent fuzzy datasets from the current changing and interconnected big data sources. This paper proposes a deep neuro-cognitive co-evolution for fuzzy attribute reduction (DNCFAR) that contains a combination of quantum leaping particle swarm optimization with nearest-neighbor memeplexes. A key element of DNCFAR resides in its deep neuro-cognitive cooperative co-evolution structure, which is explicitly permitted to identify interdependent variables and adaptively decompose them in the same neuro-subpopulation, with minimizing the complexity and nonseparability of interdependent variables among different fuzzy attribute subsets. Next DNCFAR formalizes to the different types of quantum leaping particles with nearest-neighbor memeplexes to share their respective solutions and deeply cooperate to evolve the assigned fuzzy attribute subsets. The experimental results demonstrate that DNCFAR can achieve competitive performance in terms of average computational efficiency and classification accuracy while reinforcing noise tolerance. Furthermore, it can be well applied to clearly identify different longitudinal surfaces of infant cerebrum regions, which indicates its great potential for brain disorder prediction based on fMRI.

Keywords: quantum leaping; attribute reduction; fuzzy attribute; neuro cognitive; deep neuro; nearest neighbor

Journal Title: IEEE Transactions on Cybernetics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.