LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Robust Rank-Constrained Sparse Learning: A Graph-Based Framework for Single View and Multiview Clustering.

Photo from wikipedia

Graph-based clustering aims to partition the data according to a similarity graph, which has shown impressive performance on various kinds of tasks. The quality of similarity graph largely determines the… Click to show full abstract

Graph-based clustering aims to partition the data according to a similarity graph, which has shown impressive performance on various kinds of tasks. The quality of similarity graph largely determines the clustering results, but it is difficult to produce a high-quality one, especially when data contain noises and outliers. To solve this problem, we propose a robust rank constrained sparse learning (RRCSL) method in this article. The L2,1-norm is adopted into the objective function of sparse representation to learn the optimal graph with robustness. To preserve the data structure, we construct an initial graph and search the graph within its neighborhood. By incorporating a rank constraint, the learned graph can be directly used as the cluster indicator, and the final results are obtained without additional postprocessing. In addition, the proposed method cannot only be applied to single-view clustering but also extended to multiview clustering. Plenty of experiments on synthetic and real-world datasets have demonstrated the superiority and robustness of the proposed framework.

Keywords: constrained sparse; robust rank; rank constrained; graph; graph based; sparse learning

Journal Title: IEEE transactions on cybernetics
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.