LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Learning an Optimal Bipartite Graph for Subspace Clustering via Constrained Laplacian Rank.

Photo from wikipedia

In this article, we focus on utilizing the idea of co-clustering algorithms to address the subspace clustering problem. In recent years, co-clustering methods have been developed greatly with many important… Click to show full abstract

In this article, we focus on utilizing the idea of co-clustering algorithms to address the subspace clustering problem. In recent years, co-clustering methods have been developed greatly with many important applications, such as document clustering and gene expression analysis. Different from the traditional graph-based methods, co-clustering can utilize the bipartite graph to extract the duality relationship between samples and features. It means that the bipartite graph can obtain more information than other traditional graph methods. Therefore, we proposed a novel method to handle the subspace clustering problem by combining dictionary learning with a bipartite graph under the constraint of the (normalized) Laplacian rank. Besides, to avoid the effect of redundant information hiding in the data, the original data matrix is not used as the static dictionary in our model. By updating the dictionary matrix under the sparse constraint, we can obtain a better coefficient matrix to construct the bipartite graph. Based on Theorem 2 and Lemma 1, we further speed up our algorithm. Experimental results on both synthetic and benchmark datasets demonstrate the superior effectiveness and stability of our model.

Keywords: laplacian rank; bipartite graph; graph; subspace clustering

Journal Title: IEEE transactions on cybernetics
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.