LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

AutoBCS: Block-Based Image Compressive Sensing With Data-Driven Acquisition and Noniterative Reconstruction.

Photo from wikipedia

Block compressive sensing (CS) is a well-known signal acquisition and reconstruction paradigm with widespread application prospects in science, engineering, and cybernetic systems. However, state-of-the-art block-based image CS (BCS) methods generally… Click to show full abstract

Block compressive sensing (CS) is a well-known signal acquisition and reconstruction paradigm with widespread application prospects in science, engineering, and cybernetic systems. However, state-of-the-art block-based image CS (BCS) methods generally suffer from two issues. The sparsifying domain and the sensing matrices widely used for image acquisition are not data driven and, thus, both the features of the image and the relationships among subblock images are ignored. Moreover, it requires to address a high-dimensional optimization problem with extensive computational complexity for image reconstruction. In this article, we provide a deep learning (DL) strategy for BCS, called AutoBCS, which automatically takes the prior knowledge of images into account in the acquisition step and establishes a reconstruction model for performing fast image reconstruction. More precisely, we present a learning-based sensing matrix to accomplish image acquisition, thereby capturing and preserving more image characteristics than those captured by the existing methods. In addition, we build a noniterative reconstruction network, which provides an end-to-end BCS reconstruction framework to maximize image reconstruction efficiency. Furthermore, we investigate comprehensive comparison studies with both traditional BCS approaches and newly developed DL methods. Compared with these approaches, our proposed AutoBCS can not only provide superior performance in terms of image quality metrics (SSIM and PSNR) and visual perception but also automatically benefit reconstruction speed.

Keywords: reconstruction; acquisition; compressive sensing; block based; image

Journal Title: IEEE transactions on cybernetics
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.