LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Automatically Building Service-Based Systems With Function Relaxation.

Photo from wikipedia

Building a quality service-based system (SBS) is one of the most important research topics in software engineering. Many studies investigate intelligent methods to simplify the process of building SBSs. In… Click to show full abstract

Building a quality service-based system (SBS) is one of the most important research topics in software engineering. Many studies investigate intelligent methods to simplify the process of building SBSs. In particular, some keyword-based SBS building methods allow service users to automatically build an SBS by only providing a few of keywords. This type of work usually constructs a directed weighted graph of a service repository. A set of minimum-weight group Steiner trees (MSTs) is extracted from the graph to represent the service functions and their relations. However, to the best of our knowledge, none of the existing keyword-based SBS building methods allow the relaxation of the function requirements for a user. A relaxed SBS may achieve a comparable functionality versus a complete SBS containing all the query functions. To fill in the above gap, we define a new problem: a bounded skyline SBS building problem, whose solution is more adaptive and less limited than the traditional keyword-based SBS building methods. To solve this problem, we propose two algorithms based on skyline query, dynamic programming, and lower bound pruning. In the experiments, we collect real-world datasets and label the nodes with keywords. We conduct a comprehensive study to demonstrate the time efficiency of our algorithms on automatically finding SBSs. We make the annotated real-world datasets and our source code open to peer researchers.

Keywords: service based; relaxation; keyword based; sbs building; sbs; service

Journal Title: IEEE transactions on cybernetics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.