LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Providing Task Allocation and Secure Deduplication for Mobile Crowdsensing via Fog Computing

Photo by campaign_creators from unsplash

Mobile crowdsensing enables a crowd of individuals to cooperatively collect data for special interest customers using their mobile devices. The success of mobile crowdsensing largely depends on the participating mobile… Click to show full abstract

Mobile crowdsensing enables a crowd of individuals to cooperatively collect data for special interest customers using their mobile devices. The success of mobile crowdsensing largely depends on the participating mobile users. The broader participation, the more sensing data are collected; nevertheless, the more replicate data may be generated, thereby bringing unnecessary heavy communication overhead. Hence it is critical to eliminate duplicate data to improve communication efficiency, a.k.a., data deduplication. Unfortunately, sensing data is usually protected, making its deduplication challenging. In this paper, we propose a fog-assisted mobile crowdsensing framework, enabling fog nodes to allocate tasks based on user mobility for improving the accuracy of task assignment. Further, a fog-assisted secure data deduplication scheme (Fo-SDD) is introduced to improve communication efficiency while guaranteeing data confidentiality. Specifically, a BLS-oblivious pseudo-random function is designed to enable fog nodes to detect and remove replicate data in sensing reports without exposing the content of reports. To protect the privacy of mobile users, we further extend the Fo-SDD to hide users’ identities during data collection. In doing so, Chameleon hash function is leveraged to achieve contribution claim and reward retrieval for anonymous mobile users. Finally, we demonstrate that both schemes achieve secure, efficient data deduplication.

Keywords: data deduplication; secure; mobile users; fog; mobile crowdsensing; deduplication

Journal Title: IEEE Transactions on Dependable and Secure Computing
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.