LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

SEAR: Secure and Efficient Aggregation for Byzantine-Robust Federated Learning

Photo by hajjidirir from unsplash

Federated learning facilitates the collaborative training of a global model among distributed clients without sharing their training data. Secure aggregation, a new security primitive for federated learning, aims to preserve… Click to show full abstract

Federated learning facilitates the collaborative training of a global model among distributed clients without sharing their training data. Secure aggregation, a new security primitive for federated learning, aims to preserve the confidentiality of both local models and training data. Unfortunately, existing secure aggregation solutions fail to defend against Byzantine failures that are common in distributed computing systems. In this work, we propose a new secure and efficient aggregation framework, SEAR, for Byzantine-robust federated learning. Relying on the trusted execution environment, i.e., Intel SGX, SEAR protects clients’ private models while enabling Byzantine resilience. Considering the limitation of the current Intel SGX's architecture (i.e., the limited trusted memory), we propose two data storage modes to efficiently implement aggregation algorithms efficiently in SGX. Moreover, to balance the efficiency and performance of aggregation, we propose a sampling-based method to efficiently detect Byzantine failures without degrading the global model's performance. We implement and evaluate SEAR in a LAN environment, and the experiment results show that SEAR is computationally efficient and robust to Byzantine adversaries. Compared to the previous practical secure aggregation framework, SEAR improves aggregation efficiency by 4-6 times while supporting Byzantine resilience at the same time.

Keywords: aggregation; federated learning; secure efficient; byzantine; secure; efficient aggregation

Journal Title: IEEE Transactions on Dependable and Secure Computing
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.