LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Model of Execution Trace Obfuscation Between Threads

Photo by dawson2406 from unsplash

Advanced reverse analysis tools have significantly improved the ability of attackers to crack software via dynamic analysis techniques, such as symbol execution and taint analysis. These techniques are widely used… Click to show full abstract

Advanced reverse analysis tools have significantly improved the ability of attackers to crack software via dynamic analysis techniques, such as symbol execution and taint analysis. These techniques are widely used in malicious fields such as vulnerability exploitation or theft of intellectual property. In this paper, we present an obfuscation strategy called “execution trace obfuscation,” wherein the program execution trace repeatedly switches between multiple threads. Our technique realizes equivalent code transformation by abstracting the obfuscation problems into pruning, cloning, and coloring problems in graph theory. Based on this, we further propose the cascade encryption of a function that depends on execution trace information with a key derived from the function address calculation process, followed by removing this key from the program. We have implemented a compiler-level system that inputs a source program and automatically generates an obfuscated file. Finally, random test proves the universality of obfuscation algorithm and verify the system’s performance. Results shows that our system can effectively interfere advanced reverse analysis tools.

Keywords: execution trace; trace obfuscation; analysis; obfuscation

Journal Title: IEEE Transactions on Dependable and Secure Computing
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.