LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Semi-Consensus Strategy Toward Multi-Functional Hybrid Energy Storage System in DC Microgrids

This paper proposes a semi-consensus strategy for multi-functional hybrid energy storage systems (HESSs) in DC microgrids. Batteries in a HESS are regulated by conventional V-P droops and supercapacitors (SCs) are… Click to show full abstract

This paper proposes a semi-consensus strategy for multi-functional hybrid energy storage systems (HESSs) in DC microgrids. Batteries in a HESS are regulated by conventional V-P droops and supercapacitors (SCs) are with integral droops (ID). Only batteries are assigned with local distributed compensators which exchange information through sparse communication links. Those SCs are exempted from data exchange process, which would save system investment costs. Within the semi-consensus scheme, the most essential function is the cooperation of V-P droop and ID that helps to naturally allocate low frequency components of load power to batteries and high frequency components to SCs, thus prolonging the overall life time of HESS. In addition to the transient power allocation function, there are other three functions endowed by the proposed strategy, which are autonomous DC bus voltage recovery to its nominal level, spontaneous SC state of charge (SOC) restoration, autonomous power sharing and SOC balancing among batteries. It is the simultaneous realization of above four functions with limit communications that makes up the main contributions in this paper. A generic mathematical modeling of HESS with the semi-consensus strategy is established. The model allows for dynamic analyses to theoretically validate the effectiveness of proposed method in both frequency and time domains. In-house experimental results are shown fully consistent with the dynamic analyses and also effectively corroborate the intended HESS multi-functional operations.

Keywords: consensus; multi functional; consensus strategy; energy; semi consensus

Journal Title: IEEE Transactions on Energy Conversion
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.