LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Model Predictive Control Approach to Operation Optimization of an Ultracapacitor Bank for Frequency Control

Photo from wikipedia

This paper presents a nonlinear dynamic simulation model of an ultracapacitor (UC) bank and the associated control system. The control system at hand consists of two levels: the lower level… Click to show full abstract

This paper presents a nonlinear dynamic simulation model of an ultracapacitor (UC) bank and the associated control system. The control system at hand consists of two levels: the lower level controls the inverter of the UC bank, while the upper control level is responsible for providing charging/discharging active power set points to be followed by the lower control level. This paper focuses on the development of the upper control level for frequency control. Specifically, two simulation case studies are developed so as to assess the performance of the proposed control framework. In the first case study the upper control level is developed using a classical Proportional-Integral-Derivative (PID) controller. In the second case study the upper control level is devised using a Model Predictive Control (MPC) algorithm based on internal linear prediction model of a nonlinear UC bank. In both cases, a nonlinear UC bank simulation model is used. The simulation case studies are modelled and tested in Matlab/Simulink. The response of the MPC-controlled UC bank is compared to the 3 existing PID-control algorithms for frequency control. The simulation results show that the MPC algorithm outperforms the conventional PID controllers.

Keywords: bank; control; model; control level; frequency control; simulation

Journal Title: IEEE Transactions on Energy Conversion
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.