LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Integrated Microstrip Meander Line Traveling Wave Tube Based on Metamaterial Absorber

Photo by jmuniz from unsplash

An integrated microstrip meander line (MML) slow-wave structure (SWS) comprised of an MML SWS and compact wideband metamaterial absorber (MMA) is proposed and demonstrated theoretically and experimentally in this paper.… Click to show full abstract

An integrated microstrip meander line (MML) slow-wave structure (SWS) comprised of an MML SWS and compact wideband metamaterial absorber (MMA) is proposed and demonstrated theoretically and experimentally in this paper. The MMA consists of metallic rectangular resonators with a metallic ground plane and a separating dielectric layer. Simulation results show that the MMA has multidistinctive absorption peaks; the bandwidth at 56-GHz peak frequency is reach up to 30 GHz. The integrated MML SWS can provide flatter gain response of output power than that made by the MML SWS with a traditional resistive coating attenuator. Experimental results are in close agreement with simulation results. A traveling wave tube (TWT) is simulated based on this integrated MML SWS. The output power of this TWT is 48.21 W at 33 GHz corresponding to a maximum gain of 30.3 dB; the output power gain is greater than 25 dB across the entire working frequency range.

Keywords: microstrip meander; metamaterial absorber; mml sws; meander line; traveling wave; integrated microstrip

Journal Title: IEEE Transactions on Electron Devices
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.