LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Probing the Critical Region of Conductive Filament in Nanoscale HfO2 Resistive-Switching Device by Random Telegraph Signals

Photo by farhanabas from unsplash

Resistive-switching random access memory (RRAM) is widely considered as a disruptive technology. Despite tremendous efforts in theoretical modeling and physical analysis, details of how the conductive filament (CF) in metal-oxide-based… Click to show full abstract

Resistive-switching random access memory (RRAM) is widely considered as a disruptive technology. Despite tremendous efforts in theoretical modeling and physical analysis, details of how the conductive filament (CF) in metal-oxide-based filamentary RRAM devices is modified during normal device operations remain speculative, because direct experimental evidence at defect level has been missing. In this paper, a random-telegraph-signal-based defect-tracking technique (RDT) is developed for probing the location and movements of individual defects and their statistical spatial and energy characteristics in the CF of state-of-the-art hafnium-oxide RRAM devices. For the first time, the critical filament region of the CF is experimentally identified, which is located near, but not at, the bottom electrode with a length of nanometer scale. We demonstrate with the RDT technique that the modification of this key constriction region by defect movements can be observed and correlated with switching operation conditions, providing insight into the resistive switching mechanism.

Keywords: random telegraph; conductive filament; switching; resistive switching; region

Journal Title: IEEE Transactions on Electron Devices
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.