In this paper, the positive bias temperature instability (PBTI) of the tunnel thin-film transistor (TFT) is well studied and compared with the conventional-TFT. The tunnel-TFT exhibits superior PBTI immunity at… Click to show full abstract
In this paper, the positive bias temperature instability (PBTI) of the tunnel thin-film transistor (TFT) is well studied and compared with the conventional-TFT. The tunnel-TFT exhibits superior PBTI immunity at high temperature and shows distinct temperature dependence of PBTI from the conventional-TFT. This is due to different influences of trap-state generation on electrical behavior of the two devices. For the poly-Si tunnel-TFT featuring trap-assisted tunneling (TAT), the impact of trap-state generation on tunneling probability is found to be temperature dependent. At lower temperature, the TAT current of a tunnel-TFT is reduced due to the lower interband transition probability, resulting in pronounced temperature dependence on the additional generated trap states after electrical stress. Therefore, the worst PBTI behavior of a tunnel-TFT occurs when the device is stressed at low temperature. Our results may be helpful to further reliability investigation of tunneling devices.
               
Click one of the above tabs to view related content.