LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ab Initio Simulation of Band-to-Band Tunneling FETs With Single- and Few-Layer 2-D Materials as Channels

Photo from wikipedia

Full-band atomistic quantum transport simulations based on first principles are employed to assess the potential of band-to-band tunneling FETs (TFETs) with a 2-D channel material as future electronic circuit components.… Click to show full abstract

Full-band atomistic quantum transport simulations based on first principles are employed to assess the potential of band-to-band tunneling FETs (TFETs) with a 2-D channel material as future electronic circuit components. We demonstrate that single-layer (SL) transition metal dichalcogenides are not well suited for TFET applications. There might, however, exist a great variety of 2-D semiconductors that have not even been exfoliated yet; this paper pinpoints some of the most promising candidates among them to realize highly efficient TFETs. SL SnTe, As, TiNBr, and Bi are all found to ideally deliver ON-currents larger than 100 $\mu \text{A}/\mu \text{m}$ at 0.5-V supply voltage and 0.1 nA/ $\mu \text{m}$ OFF-current value. We show that going from single to multiple layers can boost the TFET performance as long as the gain from a narrowing bandgap exceeds the loss from the deteriorating gate control. Finally, a 2-D van der Waals heterojunction TFET is revealed to perform almost as well as the best SL homojunction, paving the way for research in optimal 2-D material combinations.

Keywords: single layer; tunneling fets; band; band band; band tunneling; inline formula

Journal Title: IEEE Transactions on Electron Devices
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.