LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Batch-Fabricated WSe₂-on-Sapphire Field-Effect Transistors Grown by Chemical Vapor Deposition

Photo by glenncarstenspeters from unsplash

Stepper-based batch fabrication of top-gated field-effect transistors (FETs) is demonstrated on few-layer WSe2-on-sapphire grown by chemical vapor deposition. This article reports the electrical characterization of 94 transistors with three different… Click to show full abstract

Stepper-based batch fabrication of top-gated field-effect transistors (FETs) is demonstrated on few-layer WSe2-on-sapphire grown by chemical vapor deposition. This article reports the electrical characterization of 94 transistors with three different transistor structures. ON-/ OFF-current ratios exceeding 105 at room temperature with noise-floor-limited gate current and contact-limited ON-current density of 15 nA/ $\mu \text{m}$ was achieved for FETs using a structure in which the gate overlaps the source and drain contacts. Two transistors with open channel access regions are used to allow ion doping through polyethylene oxide: cesium perchlorate (PEO: CsClO4) to induce electron and hole conductivity and allow characterization of the intrinsic FET characteristics. In these geometries, the ON-current increased by four orders of magnitude with ON-/ OFF-current ratio greater than 106 at ${V}_{\text {DS}} = -0.05$ V, compared to gate overlapped FETs. An analytic 2-D FET model was used to model the full current-voltage characteristics. This allowed the field-effect mobility to be extracted revealing the gate and drain field dependence for the first time. The fit of the measured characteristics from subthreshold to saturation is made with only four fitting parameters, revealing a field-dependent electron mobility ranging from 1 to 2.6 cm2/Vs.

Keywords: field; grown chemical; effect transistors; chemical vapor; field effect

Journal Title: IEEE Transactions on Electron Devices
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.