LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Scalability of Quad Interface p-MTJ for 1X nm STT-MRAM With 10-ns Low Power Write Operation, 10 Years Retention and Endurance > 10¹¹

We fabricated a quadruple-interface perpendicular magnetic tunnel junction (MTJ) (Quad-MTJ) down to 33 nm using physical vapor-deposition, reactive ion etching, and damage-control integration process technologies that we developed under a… Click to show full abstract

We fabricated a quadruple-interface perpendicular magnetic tunnel junction (MTJ) (Quad-MTJ) down to 33 nm using physical vapor-deposition, reactive ion etching, and damage-control integration process technologies that we developed under a 300-mm process. We demonstrated the greater scalability and higher writing speed of Quad-MTJ compared with double-interface perpendicular MTJ: 1) it has twice the thermal stability factor—1X nm Quad-MTJ can achieve 10 years retention—while maintaining a low resistance-area product and high tunnel magnetoresistance ratio; 2) smaller overdrive ratio of write voltage to obtain a sufficiently low write-error rate; 2) smaller pulsewidth dependence of the switching current; and 4) more than double the write efficiency at 10-ns write operation down to 33-nm MTJ. The effective suppression of the switching current increase for higher write speeds was explained by the spin-transfer-torque model using the Fokker-Planck equation. Our 33-nm Quad-MTJ also achieved excellent endurance (at least 1011) owing to its higher write efficiency and low-damage integration-process technology. It is thus a promising method for low power, high speed, and reliable STT-MRAM with excellent scalability down to the 1X nm node.

Keywords: quad mtj; years retention; mtj; scalability; write operation; interface

Journal Title: IEEE Transactions on Electron Devices
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.