LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

On the Operation Modes of Dual-Gate Reconfigurable Nanowire Transistors

We investigate the operation modes of a dual-gate reconfigurable field-effect transistor (RFET). To this end, dual-gate silicon-nanowire FETs are fabricated based on anisotropic wet etching of silicon and nickel silicidation… Click to show full abstract

We investigate the operation modes of a dual-gate reconfigurable field-effect transistor (RFET). To this end, dual-gate silicon-nanowire FETs are fabricated based on anisotropic wet etching of silicon and nickel silicidation yielding silicide-nanowire Schottky junctions at source and drain. We compare the program gate at source (PGAS) with the more usual program gate at drain (PGAD) operation mode. While in PGAD mode, ambipolar operation is suppressed, switching is deteriorated due to the injection through a Schottky barrier. Operating the RFET in PGAS mode yields a switching behavior close to a conventional MOSFET. This, however, needs to be traded off against strongly nonlinear output characteristics for small bias voltages. Our measurement results are supported by transport simulations employing a nonequilibrium Green’s function approach.

Keywords: operation modes; gate reconfigurable; gate; modes dual; operation; dual gate

Journal Title: IEEE Transactions on Electron Devices
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.