LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Micro-Transfer Printing for Heterogeneous Integration of GaN and GaAs HEMTs

Photo from wikipedia

Here, we use the micro-transfer printing technique to demonstrate the device-level heterogeneous integration of two solid-state RF device technologies on the same interposer: GaN and GaAs high-electron-mobility transistors. The devices… Click to show full abstract

Here, we use the micro-transfer printing technique to demonstrate the device-level heterogeneous integration of two solid-state RF device technologies on the same interposer: GaN and GaAs high-electron-mobility transistors. The devices are released from their growth substrate using an epitaxial sacrificial layer while a thin polymer adhesion layer facilitates a strong bond between the target substrate and the compound semiconductor devices, allowing for post-transfer microfabrication processing. Transmission electron microscopy reveals no voids at the device/interposer interface and a polymer adhesion layer thickness of 5 ± 2 nm. No significant degradation in dc electrical characteristics is observed after device transfer for either device technology. Improvement in thermal performance of GaN devices was demonstrated when transferred to a diamond substrate, even with the thin polymer adhesion layer at the device/interposer interface, illustrating a pathway for enhanced thermal management for GaN and other high-output-power density semiconductor technologies. The ability to combine various solid-state technologies at the device level with high density provides an approach to meet next-generation demands for RF and mixed-signal circuits.

Keywords: transfer; micro transfer; transfer printing; device; heterogeneous integration; gan gaas

Journal Title: IEEE Transactions on Electron Devices
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.