LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Bridging the Gap between Resilient Networks-on-Chip and Real-Time Systems

Photo from wikipedia

Conventional fault-tolerance approaches for Networks-on-Chip (NoCs) cannot be applied to high dependability systems due to their different goals and constraints. These systems impose strict integrity, resilience and real-time requirements. In… Click to show full abstract

Conventional fault-tolerance approaches for Networks-on-Chip (NoCs) cannot be applied to high dependability systems due to their different goals and constraints. These systems impose strict integrity, resilience and real-time requirements. In order to meet these requirements, all possible effects of random hardware errors must be taken into account, silent data corruption must be prevented and the resulting system must be predictable in the presence of errors. In this paper, we present a wormhole-switched NoC with virtual channels for high dependability systems hardened against soft errors. The NoC is developed based on results of a Failure Mode and Effects Analysis. It efficiently handles errors in different network layers and operates with formal guarantees. Our experimental evaluation, including an industrial avionics use case, shows that the network is able to achieve predictable behavior even in aggressive environments with very high error rates while presenting competitive overheads.

Keywords: networks chip; real time; gap resilient; bridging gap

Journal Title: IEEE Transactions on Emerging Topics in Computing
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.