LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Reformative Noise-Immune Neural Network for Equality-Constrained Optimization Applied to Image Target Detection

Photo from wikipedia

Equality-constrained optimization problem captures increasing attention in the fields of computer science, control engineering, and applied mathematics. Almost all of the relevant issues suffer from kinds of intense or weak… Click to show full abstract

Equality-constrained optimization problem captures increasing attention in the fields of computer science, control engineering, and applied mathematics. Almost all of the relevant issues suffer from kinds of intense or weak noises during the solving process, so that how to realize the noise deduction even noise elimination has increasingly become a sticky and significant problem. A lot of corresponding solving models are established for the equality-constrained optimization problem. However, the majority of them can find the optimal solution to a certain extent in the absence of noise disturbance, but few can behave a brilliant noise-resistance proficiency. On account of this discovery, a reformative noise-immune neural network (RNINN) model is constructed. In addition, the conventional gradient-based recursive neural network model and the zeroing recursive neural network model are presented to compare with the proposed RNINN model on convergence properties and noise-resistance capabilities. Lastly, the relative numerical experiment simulation and image target detection application are implemented to further elaborate on the robustness and efficiency of the RNINN model.

Keywords: constrained optimization; neural network; noise; equality constrained

Journal Title: IEEE Transactions on Emerging Topics in Computing
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.