LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Varying Spread Fuzzy Regression for Affective Quality Estimation

Design of preferred products requires affective quality information which relates to human emotional satisfaction. However, it is expensive and time consuming to conduct a full survey to investigate affective qualities… Click to show full abstract

Design of preferred products requires affective quality information which relates to human emotional satisfaction. However, it is expensive and time consuming to conduct a full survey to investigate affective qualities regarding all objective features of a product. Therefore, developing a prediction model is essential in order to understand affective qualities on a product. This paper proposes a novel fuzzy regression method in order to predict affective quality and estimate fuzziness in human assessment, when objective features are given. The proposed fuzzy regression also improves on traditional fuzzy regression that simulate only a single characteristic with the resulting limitation that the amount of fuzziness is linear correlated with the independent and dependent variables. The proposed method uses a varying spread to simulate nonlinear and nonsymmetrical fuzziness caused by affective quality assessment. The effectiveness of the proposed method is evaluated by two very different case studies, affective design of an electric iron and image quality assessment, which involve different amounts of data, varying fuzziness, and discrete and continuous data. The results obtained by the proposed method are compared with those obtained by the state of art and the recently developed fuzzy regression methods. The results show that the proposed method can generate better prediction models in terms of three fuzzy criteria, which address both predictions of magnitudes and fuzziness.

Keywords: quality; varying spread; proposed method; fuzzy regression; affective quality

Journal Title: IEEE Transactions on Fuzzy Systems
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.