Pedestrian detection in infrared images is always a challenging task. Segmentation is an important step of pedestrian detection. An accurate segmentation could provide more information for further analysis. In this… Click to show full abstract
Pedestrian detection in infrared images is always a challenging task. Segmentation is an important step of pedestrian detection. An accurate segmentation could provide more information for further analysis. In this paper, an improved Fuzzy C-Means clustering method, which incorporates geometric symmetry information, is proposed for infrared pedestrian segmentation. In the proposed method, symmetry information is introduced by Markov random field theory. Moreover, a new metric is utilized to handle the weak symmetry of pedestrian. In addition, a whole procedure is proposed to extract infrared pedestrians. The experimental results indicate that our method performs better for infrared pedestrian segmentation and obtains better segmentation results compared with other state-of-the-art methods.
               
Click one of the above tabs to view related content.