This paper is focused on the event-triggered fuzzy sliding-mode control of networked control systems regulated by semi-Markov process. First, through movement-decomposition method, the networked control system is transformed into two… Click to show full abstract
This paper is focused on the event-triggered fuzzy sliding-mode control of networked control systems regulated by semi-Markov process. First, through movement-decomposition method, the networked control system is transformed into two lower-order subsystems. Then, an event-triggered scheme based on a delay system model approach is proposed in designing the switching surface and obtaining the sliding mode dynamics. Furthermore, a fuzzy sliding-mode controller is developed to realize reachability of a predefined switching surface and desirable sliding motion. Moreover, in terms of linear matrix inequality method, sufficient conditions for stochastic stability of the obtained sliding mode dynamics is developed in the sense of generally uncertain transition rates. Finally, the applicability of the proposed results are verified numerically on the single-link robot arm system.
               
Click one of the above tabs to view related content.