LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

FuzzyAct: A Fuzzy-Based Framework for Temporal Activity Recognition in IoT Applications Using RNN and 3D-DWT

Photo by alexbemore from unsplash

Despite massive research in deep learning, the human activity recognition (HAR) domain still suffers from key challenges in terms of accurate classification and detection. The core idea behind recognizing activities… Click to show full abstract

Despite massive research in deep learning, the human activity recognition (HAR) domain still suffers from key challenges in terms of accurate classification and detection. The core idea behind recognizing activities accurately is to assist Internet-of-things (IoT) enabled smart surveillance systems. Thereby, this work is based on the joint use of discrete wavelet transform (DWT) and recurrent neural network (RNN) to classify and detect human activities accurately. Recent approaches on HAR exploit the three-dimensional (3-D) convolutional neural networks (CNNs) to extract spatial information, which adds a computational burden. In our case, features are extracted using 3D-DWT instead of 3-D CNNs, performed in three steps of 1D-DWT to reflect the spatio-temporal features of human action. Given the features, the RNN produces an output label for each video clip taking care of the long-term temporal consistency among close predictions in the output sequence. It is noticed that feature extraction through 3D-DWT essentially recovers the multiple angles of an activity. Many HAR techniques distinguish an activity based on the posture of an image frame rather than learning the transitional relationship between postures in the temporal sequence, resulting in degraded accuracy. To address this problem, in this article, we designed a novel rank-based fuzzy approach that segregates activities precisely by ranking the probabilities of activities based on confidence scores. FuzzyAct achieved an average mean average precision (mAP) of 0.8012 mAP on the ActivityNet dataset, and outperformed the baseline counterparts and other state-of-the-art approaches on benchmark datasets. Finally, we present a mechanism to compress the proposed RNN for edge-enabled IoT applications.

Keywords: iot applications; dwt; rnn; activity; activity recognition

Journal Title: IEEE Transactions on Fuzzy Systems
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.