LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Facet-Based Investigation on Microwave Backscattering From Sea Surface With Breaking Waves: Sea Spikes and SAR Imaging

Photo from wikipedia

A complete facet model for the backscattering from rough sea surface with breaking waves is proposed in this paper. In consideration of the spatial distribution of breaking waves on sea… Click to show full abstract

A complete facet model for the backscattering from rough sea surface with breaking waves is proposed in this paper. In consideration of the spatial distribution of breaking waves on sea surface, the model is able to give a good interpretation to the “super events” under high sea states, such as sea spikes and high polarization ratios. Based on the proposed model, normalized radar cross section plots of sea surface under backscattering configuration are calculated and compared with measured data. The comparisons show that the proposed model is tractable to estimate the scattering from electrically large ocean surface under high sea states with accuracy and efficiency. In addition, the non-Gaussian statistics and spatial correlation properties of sea clutter are analyzed under different range resolutions and incident angles. The results show that high kurtosis value, which means a sea spike phenomenon, mostly happens in lower grazing angle and higher range resolution cases. The comparisons of simulated SAR images of sea surface with and without breaking waves also reveal that sea spikes and high polarization ratios are caused by breaking waves. All the simulation results prove that our model not only is able to explain the physical mechanism of the scattering but also can be applied to the analyses of statistical properties of sea clutter under high sea states.

Keywords: breaking waves; sea; surface; sea spikes; sea surface; surface breaking

Journal Title: IEEE Transactions on Geoscience and Remote Sensing
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.