The Surface Moisture and Ocean Salinity (SMOS) mission senses ocean salinity and soil moisture by measuring Earth’s brightness temperature using interferometry in the L-band. These interferometry measurements known as visibilities… Click to show full abstract
The Surface Moisture and Ocean Salinity (SMOS) mission senses ocean salinity and soil moisture by measuring Earth’s brightness temperature using interferometry in the L-band. These interferometry measurements known as visibilities constitute the SMOS L1A data product. Despite the L-band being reserved for Earth observation, the presence of illegal emitters causes radio frequency interference (RFI) that masks the energy radiated from the Earth and strongly corrupts the acquired images. Therefore, the recovery of brightness temperature from corrupted data by image restoration techniques is of major interest. In this paper, we propose a variational model to recover superresolved, denoised brightness temperature maps by decomposing the images into two components: an image $T$ that models the Earth’s brightness temperature and an image $O$ modeling the RFIs.
Share on Social Media:
  
        
        
        
Sign Up to like & get recommendations! 1
Related content
More Information
            
News
            
Social Media
            
Video
            
Recommended
               
Click one of the above tabs to view related content.