LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Enhanced Resolution Stripmap Mode Using Dynamic Metasurface Antennas

Photo from wikipedia

To maintain sufficient signal-to-noise ratio (SNR) for image reconstruction and image interpretation, conventional synthetic aperture radar (SAR) systems must trade off resolution and scene size. This paper proposes a new… Click to show full abstract

To maintain sufficient signal-to-noise ratio (SNR) for image reconstruction and image interpretation, conventional synthetic aperture radar (SAR) systems must trade off resolution and scene size. This paper proposes a new SAR mode of operation, which improves resolution while maintaining good SNR and a large scene size. It leverages the unique properties of dynamic metasurface antennas (MSAs) to subsample a large virtual beamwidth utilizing multiple small distinct antenna beams. Due to this parallelization in scene sampling, the constraints on the azimuth sampling rate can be relaxed while maintaining an aliasing-free cross range. Due to the versatile properties of MSAs and their cost effective manufacturing process, this paper proposes SAR systems, which can obtain high resolution images over a wide scene size with lower cost and complexity than competing approaches. Point-spread functions and proof-of-concept SAR simulations are shown to verify this approach. In addition, laboratory experiments using a commercial prototype MSA are presented, which show an improvement of 62% in cross-range resolution of the proposed approach, compared with the cross-range resolution of stripmap mode SAR with the same aperture.

Keywords: resolution; mode; resolution stripmap; dynamic metasurface; metasurface antennas; stripmap mode

Journal Title: IEEE Transactions on Geoscience and Remote Sensing
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.