LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Unsupervised Nonlinear Spectral Unmixing Based on a Multilinear Mixing Model

Photo by thinkmagically from unsplash

In the community of remote sensing, nonlinear mixture models have recently received particular attention in hyperspectral image processing. In this paper, we present a novel nonlinear spectral unmixing method following… Click to show full abstract

In the community of remote sensing, nonlinear mixture models have recently received particular attention in hyperspectral image processing. In this paper, we present a novel nonlinear spectral unmixing method following the recent multilinear mixing model of Heylen and Scheunders, which includes an infinite number of terms related to interactions between different endmembers. The proposed unmixing method is unsupervised in the sense that the endmembers are estimated jointly with the abundances and other parameters of interest, i.e., the transition probability of undergoing further interactions. Nonnegativity and sum-to-one constraints are imposed on abundances while only nonnegativity is considered for endmembers. The resulting unmixing problem is formulated as a constrained nonlinear optimization problem, which is solved by a block coordinate descent strategy, consisting of updating the endmembers, abundances, and transition probability iteratively. The proposed method is evaluated and compared with existing linear and nonlinear unmixing methods for both synthetic and real hyperspectral data sets acquired by the airborne visible/infrared imaging spectrometer sensor. The advantage of using nonlinear unmixing as opposed to linear unmixing is clearly shown in these examples.

Keywords: mixing model; spectral unmixing; multilinear mixing; nonlinear spectral

Journal Title: IEEE Transactions on Geoscience and Remote Sensing
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.