LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ship Detection in Dual-Channel ATI-SAR Based on the Notch Filter

Photo by hannahrdg from unsplash

Synthetic aperture radar (SAR) in along-track interferometry (ATI) mode has been extensively applied in velocity measurements of ocean currents and ship detection. A notch filter was recently proposed and was… Click to show full abstract

Synthetic aperture radar (SAR) in along-track interferometry (ATI) mode has been extensively applied in velocity measurements of ocean currents and ship detection. A notch filter was recently proposed and was demonstrated to be a promising tool for ship detection exploiting quad- or dual-polarization SAR information. In this paper, the investigation of the notch filter is extended to the dual-channel ATI-SAR mechanism for ship detection on the ocean surface. First, a theoretical proof that the interferometric magnitude performs better in ship detection than single-channel amplitude/intensity is given based on the signal-clutter-ratio improvement, which validates the advantages of interferometric SAR against conventional single-channel SAR for the purpose of ship observations on the ocean surface. Second, based on the proof, the version of the notch filter that is suitable for the ATI-SAR, that is, the interferometric notch filter (INF), is proposed. We then analyze the statistical models of the INF distance, which can facilitate the adaptive realization of INF for ship detection in ATI-SAR. Finally, the experimental results for dual-channel ATI-SAR data measured by NASA/JPL L-band AIRSAR verify the accuracy of the theoretical analysis and effectiveness of the INF.

Keywords: ati sar; channel; notch filter; ship detection; sar

Journal Title: IEEE Transactions on Geoscience and Remote Sensing
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.