LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An Empirical Mode Decomposition Method for Sea Surface Wind Measurements From X-Band Nautical Radar Data

Photo from wikipedia

In this paper, sea surface wind direction and speed are obtained from X-band nautical radar images. A data control strategy is proposed to distinguish rain-free and rain-contaminated radar data. The… Click to show full abstract

In this paper, sea surface wind direction and speed are obtained from X-band nautical radar images. A data control strategy is proposed to distinguish rain-free and rain-contaminated radar data. The radar data are decomposed by an ensemble empirical mode decomposition method into several intrinsic mode functions (IMFs) and a residual. A normalization scheme is applied to the first IMF to obtain the amplitude modulation (AM) component. Wind direction is determined from the residual for the rain-free and high-wind-speed rain-contaminated data, and from the AM portion of the first IMF for the low-wind-speed rain-contaminated data, based on curve fitting a harmonic function. Wind speed is determined from a combination of the residual and the AM part of the first IMF for both rain-free and rain-contaminated data using a logarithmic relationship. Results employing ship-borne radar and anemometer data collected in a sea trial off the east coast of Canada are presented. The root-mean-square differences for wind direction and speed measurements are 11.5° and 1.31 m/s, respectively, compared with reference values from anemometers.

Keywords: mode; radar data; sea; radar; speed; rain

Journal Title: IEEE Transactions on Geoscience and Remote Sensing
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.