LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Detection and Estimation of Equatorial Spread F Scintillations Using Synthetic Aperture Radar

Photo by joshbrown from unsplash

A significant amount of the data acquired by sun-synchronous space-borne low-frequency synthetic aperture radars (SARs) through the postsunset equatorial sector are distorted by the ionospheric scintillations due to the presence… Click to show full abstract

A significant amount of the data acquired by sun-synchronous space-borne low-frequency synthetic aperture radars (SARs) through the postsunset equatorial sector are distorted by the ionospheric scintillations due to the presence of plasma irregularities and their zonal and vertical drift. In the focused SAR images, the distortions due to the postsunset equatorial ionospheric scintillations appear in the form of amplitude and/or phase “stripe” patterns of high spatial frequency aligned to the projection of the geomagnetic field onto the SAR image plane. In this paper, a methodology to estimate the height and the drift velocity of the scintillations from the “stripe” patterns detected in the SAR images is proposed. The analysis is based on the fact that the zonal and vertical drift of the plasma irregularities are, at the equatorial zone, perpendicular to the geomagnetic field which is almost parallel aligned to the orbit. The methodology takes advantage of the time lapse and change of imaging geometry across azimuth subapertures. The obtained height estimates agree well with the reference measurements and independent estimates reported in the literature, while the drift velocities appear slightly overestimated. This can be attributed to a suboptimum geometry configuration but also to a decoupling of the ambient ionosphere and the plasma irregularities.

Keywords: drift; methodology; plasma irregularities; geometry; synthetic aperture

Journal Title: IEEE Transactions on Geoscience and Remote Sensing
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.