In the field of spatial–spectral fusion, the variational model-based methods and the deep learning (DL)-based methods are state-of-the-art approaches. This paper presents a fusion method that combines the deep neural… Click to show full abstract
In the field of spatial–spectral fusion, the variational model-based methods and the deep learning (DL)-based methods are state-of-the-art approaches. This paper presents a fusion method that combines the deep neural network with a variational model for the most common case of spatial–spectral fusion: panchromatic (PAN)/multispectral (MS) fusion. Specifically, a deep residual convolutional neural network (CNN) is first trained to learn the gradient features of the high spatial resolution multispectral image (HR-MS). The image observation variational models are then formulated to describe the relationships of the ideal fused image, the observed low spatial resolution multispectral image (LR-MS) image, and the gradient priors learned before. Then, fusion result can then be obtained by solving the fusion variational model. Both quantitative and visual assessments on high-quality images from various sources demonstrate that the proposed fusion method is superior to all the mainstream algorithms included in the comparison, in terms of overall fusion accuracy.
               
Click one of the above tabs to view related content.