LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Saliency-Guided Deep Neural Networks for SAR Image Change Detection

Photo from wikipedia

Change detection is an important task to identify land-cover changes between the acquisitions at different times. For synthetic aperture radar (SAR) images, inherent speckle noise of the images can lead… Click to show full abstract

Change detection is an important task to identify land-cover changes between the acquisitions at different times. For synthetic aperture radar (SAR) images, inherent speckle noise of the images can lead to false changed points, which affects the change detection performance. Besides, the supervised classifier in change detection framework requires numerous training samples, which are generally obtained by manual labeling. In this paper, a novel unsupervised method named saliency-guided deep neural networks (SGDNNs) is proposed for SAR image change detection. In the proposed method, to weaken the influence of speckle noise, a salient region that probably belongs to the changed object is extracted from the difference image. To obtain pseudotraining samples automatically, hierarchical fuzzy C-means (HFCM) clustering is developed to select samples with higher probabilities to be changed and unchanged. Moreover, to enhance the discrimination of sample features, DNNs based on the nonnegative- and Fisher-constrained autoencoder are applied for final detection. Experimental results on five real SAR data sets demonstrate the effectiveness of the proposed approach.

Keywords: guided deep; change detection; image; saliency guided; detection

Journal Title: IEEE Transactions on Geoscience and Remote Sensing
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.