LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Temporal Phase Coherence Estimation Algorithm and Its Application on DInSAR Pixel Selection

Photo by aleexcif from unsplash

Pixel selection is a crucial step of all advanced Differential Interferometric Synthetic Aperture Radar (DInSAR) techniques that have a direct impact on the quality of the final DInSAR products. In… Click to show full abstract

Pixel selection is a crucial step of all advanced Differential Interferometric Synthetic Aperture Radar (DInSAR) techniques that have a direct impact on the quality of the final DInSAR products. In this paper, a full-resolution phase quality estimator, i.e., the temporal phase coherence (TPC), is proposed for DInSAR pixel selection. The method is able to work with both distributed scatterers (DSs) and permanent scatterers (PSs). The influence of different neighboring window sizes and types of interferograms combinations [both the single-master (SM) and the multi-master (MM)] on TPC has been studied. The relationship between TPC and phase standard deviation (STD) of the selected pixels has also been derived. Together with the classical coherence and amplitude dispersion methods, the TPC pixel selection algorithm has been tested on 37 VV polarization Radarsat-2 images of Barcelona Airport. Results show the feasibility and effectiveness of TPC pixel selection algorithm. Besides obvious improvements in the number of selected pixels, the new method shows some other advantages comparing with the other classical two. The proposed pixel selection algorithm, which presents an affordable computational cost, is easy to be implemented and incorporated into any advanced DInSAR processing chain for high-quality pixels’ identification.

Keywords: selection; dinsar; coherence; pixel selection; phase

Journal Title: IEEE Transactions on Geoscience and Remote Sensing
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.