LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Remote Sensing Scene Classification by Gated Bidirectional Network

Photo by kiranck123 from unsplash

Remote sensing (RS) scene classification is a challenging task due to various land covers contained in RS scenes. Recent RS classification methods demonstrate that aggregating the multilayer convolutional features, which… Click to show full abstract

Remote sensing (RS) scene classification is a challenging task due to various land covers contained in RS scenes. Recent RS classification methods demonstrate that aggregating the multilayer convolutional features, which are extracted from different hierarchical layers of a convolutional neural network, can effectively improve classification accuracy. However, these methods treat the multilayer convolutional features as equally important and ignore the hierarchical structure of multilayer convolutional features. Multilayer convolutional features not only provide complementary information for classification but also bring some interference information (e.g., redundancy and mutual exclusion). In this paper, a gated bidirectional network is proposed to integrate the hierarchical feature aggregation and the interference information elimination into an end-to-end network. First, the performance of each convolutional feature is quantitatively analyzed and a superior combination of convolutional features is selected. Then, a bidirectional connection is proposed to hierarchically aggregate multilayer convolutional features. Both the top–down direction and the bottom–up direction are considered to aggregate multilayer convolutional features into the semantic-assist feature and appearance-assist feature, respectively, and a gated function is utilized to eliminate interference information in the bidirectional connection. Finally, the semantic-assist feature and appearance-assist feature are merged for classification. The proposed method can compete with the state-of-the-art methods on four RS scene classification data sets (AID, UC-Merced, WHU-RS19, and OPTIMAL-31).

Keywords: convolutional features; remote sensing; multilayer convolutional; feature; classification; network

Journal Title: IEEE Transactions on Geoscience and Remote Sensing
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.