LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Rain Detection From X-Band Marine Radar Images: A Support Vector Machine-Based Approach

Photo by maxwbender from unsplash

Since rain alters the histogram pattern of radar images, rain-contaminated radar data can be identified. In this article, a support vector machine (SVM)-based method for rain detection using X-band marine… Click to show full abstract

Since rain alters the histogram pattern of radar images, rain-contaminated radar data can be identified. In this article, a support vector machine (SVM)-based method for rain detection using X-band marine radar images is presented. First, the normalized histogram bin values for each image are extracted and combined into feature vector. Then, SVMs are employed to classify between rain-free and rain-contaminated images. Radar images and simultaneous rain rate data collected from a sea trial in North Atlantic Ocean are utilized for model training and testing. Comparison with the zero pixel percentage (ZPP) threshold method shows that the SVM-based method obtains higher detection accuracy, with 98.4% for the Decca radar data and 99.7% for the Furuno radar. It is also found that as the total number of bins does not significantly affect detection accuracy, the proposed method can be applied to different radar systems directly with a suitable number of bins. In addition, compared to the ZPP threshold method, the SVM-based method proves to be more robust even with limited training samples.

Keywords: rain; vector; radar images; method; radar; detection

Journal Title: IEEE Transactions on Geoscience and Remote Sensing
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.