LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

ColorMapGAN: Unsupervised Domain Adaptation for Semantic Segmentation Using Color Mapping Generative Adversarial Networks

Photo by efekurnaz from unsplash

Due to the various reasons, such as atmospheric effects and differences in acquisition, it is often the case that there exists a large difference between the spectral bands of satellite… Click to show full abstract

Due to the various reasons, such as atmospheric effects and differences in acquisition, it is often the case that there exists a large difference between the spectral bands of satellite images collected from different geographic locations. The large shift between the spectral distributions of training and test data causes the current state-of-the-art supervised learning approaches to output unsatisfactory maps. We present a novel semantic segmentation framework that is robust to such a shift. The key component of the proposed framework is color mapping generative adversarial networks (ColorMapGANs) that can generate fake training images that are semantically exactly the same as training images, but whose spectral distribution is similar to the distribution of the test images. We then use the fake images and the ground truth for the training images to fine-tune the already trained classifier. Contrary to the existing generative adversarial networks (GANs), the generator in ColorMapGAN does not have any convolutional or pooling layers. It learns to transform the colors of the training data to the colors of the test data by performing only one elementwise matrix multiplication and one matrix-addition operation. Due to the architecturally simple but powerful design of ColorMapGAN, the proposed framework outperforms the existing approaches with a large margin in terms of both accuracy and computational complexity.

Keywords: generative adversarial; color mapping; mapping generative; semantic segmentation; adversarial networks

Journal Title: IEEE Transactions on Geoscience and Remote Sensing
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.