Most convolutional neural network (CNN)-based cloud detection methods are built upon the supervised learning framework that requires a large number of pixel-level labels. However, it is expensive and time-consuming to… Click to show full abstract
Most convolutional neural network (CNN)-based cloud detection methods are built upon the supervised learning framework that requires a large number of pixel-level labels. However, it is expensive and time-consuming to manually annotate pixelwise labels for massive remote sensing images. To reduce the labeling cost, we propose an unsupervised domain adaptation (UDA) approach to generalize the model trained on labeled images of source satellite to unlabeled images of the target satellite. To effectively address the domain shift problem on cross-satellite images, we develop a novel UDA method based on grouped features alignment (GFA) and entropy minimization (EM) to extract domain-invariant representations to improve the cloud detection accuracy of cross-satellite images. The proposed UDA method is evaluated on “Landsat-
               
Click one of the above tabs to view related content.