LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Multidimensional Local Binary Pattern for Hyperspectral Image Classification

Photo from wikipedia

For the large amount of spatial and spectral information contained in hyperspectral image (HSI), feature description of HSI has attracted widespread concern in recent years. Existing deep learning-based HSI feature… Click to show full abstract

For the large amount of spatial and spectral information contained in hyperspectral image (HSI), feature description of HSI has attracted widespread concern in recent years. Existing deep learning-based HSI feature description algorithms require a large number of training samples and have poor interpretability. Therefore, it is necessary to develop an efficient HSI features description algorithm with interpretability based on machine learning. Local binary pattern (LBP) is a classical descriptor used to extract the local spatial texture features of images, which has been widely applied to image feature description and matching. However, the existing LBP algorithms for HSI are based on the single-dimensional description, which leads to the limitations on the expression of spatial–spectral information. Therefore, a multidimensional LBP (MDLBP) based on Clifford algebra for HSI is proposed in this article, which is able to extract spatial–spectral feature from multiple dimensions. First, with the theory of the Clifford algebra, a new representation of HSI including spatial and spectral information is built. Second, the geometric relationship between the local geometry of HSI in Clifford algebra space is calculated to realize the local multidimensional description of the local spatial–spectral information. Finally, a novel LBP coding algorithm for HSI is implemented based on the local multidimensional description to calculate the feature descriptor of HSI. The experimental results on HSI classification show that our proposed MDLBP algorithm can achieve higher accuracy than the representative spatial–spectral features and the existing LBP algorithms, especially in the scenery of small-scale training samples.

Keywords: spatial spectral; feature; spectral information; hsi; description; image

Journal Title: IEEE Transactions on Geoscience and Remote Sensing
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.