LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Radio Interferometer Observations and Analysis of an Energetic In-Cloud Pulse Based on Ensemble Empirical Mode Decomposition

Based on the ensemble empirical mode decomposition (EEMD) method, a DAF method for signal construction is proposed that repeatedly decomposes (D) the signal, amplifies (A) the local signal characteristics, and… Click to show full abstract

Based on the ensemble empirical mode decomposition (EEMD) method, a DAF method for signal construction is proposed that repeatedly decomposes (D) the signal, amplifies (A) the local signal characteristics, and then filters (F) the signal. This method is used to decompose and reconstruct the electric field waveform (called a sferic) of an energetic in-cloud pulse (EIP) with a 247-kA peak current detected by a fast antenna (FA). Based on synchronous sub-microsecond very high-frequency (VHF, 14–88 MHz) radio interferometer (INTF) observations and observed downward fast positive and upward fast negative breakdowns, which occurred simultaneously with the EIP, the EIP sferic is decomposed by the DAF method in 11 steps into two independent sferics: a smoother filtered EIP sferic and an embedded narrow bipolar-like event (NBE). It is verified that strong VHF radiation is generated by the NBE-like event, rather than being associated with the smooth EIP sferic. The analysis, decomposition, and reconstruction of the correlated signals by the EEMD-based DAF method proposed in this article support the idea that the large-amplitude EIP sferic was generated by relativistic discharge responsible for an accompanying terrestrial gamma-ray flash (TGF) rather than by streamer or leader activity.

Keywords: empirical mode; mode decomposition; based ensemble; decomposition; ensemble empirical; energetic cloud

Journal Title: IEEE Transactions on Geoscience and Remote Sensing
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.