LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Deep-Sea Sediment Mixed Pixel Decomposition Based on Multibeam Backscatter Intensity Segmentation

Photo from wikipedia

The ability to accurately map the seabed sediments plays an important role in seabed habitat development and stakeholder decision-making. In conventional seabed sediment classification methods, maps of seabed sediment are… Click to show full abstract

The ability to accurately map the seabed sediments plays an important role in seabed habitat development and stakeholder decision-making. In conventional seabed sediment classification methods, maps of seabed sediment are provided in categorical form (sediment classes). Therefore, the prediction of the sediment compositions in multibeam observational units has become a difficult issue in using conventional methods. To tackle this challenge, a new strategy is developed to realize the subpixel decomposition of seabed sediments. A key attribute of the proposed sediment decomposition model is that it utilizes spatial–spectral information provided by multibeam backscatter angular responses (ARs). First, an AR feature extraction method utilizing a bidirectional sliding window is proposed and a $K$ -means clustering algorithm is used for segmentation. Second, a deep-sea sediment decomposition model based on the fuzzy method is constructed by selecting experimental samples that are distributed within a single clustering region. This model inverts the abundance of each sediment composition in the form of membership degrees. Finally, deep-sea multibeam survey data collected from the central Philippine Sea are used for verification. The overall mean square error and coefficient of determination reach 0.043 and 0.856, respectively. The experimental results show that the new method can accurately decompose deep-sea sediment compositions, thus providing a new technique for deep-sea acoustic sediment remote sensing and quantitative analysis.

Keywords: multibeam; deep sea; sea sediment; decomposition; sea

Journal Title: IEEE Transactions on Geoscience and Remote Sensing
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.