LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Cross-Modality Image Matching Network With Modality-Invariant Feature Representation for Airborne-Ground Thermal Infrared and Visible Datasets

Photo from wikipedia

Thermal infrared (TIR) remote-sensing imagery can allow objects to be imaged clearly at night through the long-wave infrared, so that the fusion of thermal infrared and visible (VIS) imagery is… Click to show full abstract

Thermal infrared (TIR) remote-sensing imagery can allow objects to be imaged clearly at night through the long-wave infrared, so that the fusion of thermal infrared and visible (VIS) imagery is a way to improve the remote-sensing interpretation ability. However, due to the large radiation difference between the two kinds of images, it is very difficult to match them. One of the most important issues is the lack of comprehensive consideration of the modality-specific information and modality-shared information, which makes it difficult for the existing methods to obtain a modality-invariant feature representation. In this article, a cross-modality image matching network, which we refer to as CMM-Net, is proposed to realize thermal infrared and visible image matching by learning a modality-invariant feature representation. First, in order to extract the modality-specific features of the imagery, the framework constructs a shallow two-branch network to make full use of the modality-specific information, without sharing parameters. Second, in order to extract the high-level semantic information between the different modalities, modality-shared layers are embedded into the deep layers of the network. In addition, three novel loss functions are designed and combined to learn the modality-invariant feature representation, that is, the discriminative loss of the non-corresponding features in the same modality, the cross-modality loss of the corresponding features between different modalities, and the cross-modality triplet (CMT) loss. The multimodal matching experiments conducted with ground- and airborne-based thermal infrared images and visible images showed that the proposed method outperforms the existing image matching methods by about 2% and 6% for the ground and airborne images, respectively.

Keywords: modality invariant; invariant feature; cross modality; feature representation; modality; thermal infrared

Journal Title: IEEE Transactions on Geoscience and Remote Sensing
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.