LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Estimation of the Hourly Aerosol Optical Depth From GOCI Geostationary Satellite Data: Deep Neural Network, Machine Learning, and Physical Models

Photo by sambalye from unsplash

In this study, a new deep learning method was developed to estimate the spatiotemporal properties of the hourly aerosol optical depth (AOD) because existing physical models are limited in their… Click to show full abstract

In this study, a new deep learning method was developed to estimate the spatiotemporal properties of the hourly aerosol optical depth (AOD) because existing physical models are limited in their abilities to separate the reflectance between aerosols and the underlying surface over land, accurately and effectively. By incorporating geostationary ocean color imagery (GOCI), multispectral bands were applied to train data-driven models to estimate the high-spatiotemporal-resolution AOD over Northeast Asia. Physical model and traditional machine learning (ML) models (the random forest (RF) and support vector regression (SVR) models) were compared with the deep neural network (DNN) model to evaluate its accuracy, implementing hold-out validation and $k$ -fold cross-validation approaches. In the statistical results of the hold-out validation, the DNN model showed the higher accuracy (root mean square error (RMSE) = 0.112, mean bias error (MBE) = 0.007, and correlation coefficient $(R) = 0.863$ ) relative to the traditional SVR (RMSE = 0.123, MBE = −0.010, and $R = 0.833$ ) and RF (RMSE = 0.125, MBE = 0.004, and $R = 0.825$ ) models. The DNN model also exhibited the best performance for most statistical metrics among the traditional SVR, RF, and selected physical models (except for the correlation coefficients and index of agreement) in the spatial and temporal cross-validation analyses. Although the DNN model was trained using the match-up dataset between the top of atmosphere (TOA) reflectance from GOCI multispectral bands and AErosol RObotic NETwork measurements, it showed high spatial and temporal generalization performance owing to its deeper and more complicated network structure. Hourly GOCI AOD data obtained using a deep learning approach with high accuracy are expected to be useful for the quantification of aerosol contents and monitoring of diurnal variations in the AOD.

Keywords: tex math; physical models; inline formula; network

Journal Title: IEEE Transactions on Geoscience and Remote Sensing
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.