Defense Meteorological Satellite Program Operational Linescan System (DMSP-OLS) and Suomi National Polar-orbiting Partnership Visible Infrared Imaging Radiometer Suite (SNPP-VIIRS) data are valuable records of nighttime lights (NTLs) in analyzing socioeconomic… Click to show full abstract
Defense Meteorological Satellite Program Operational Linescan System (DMSP-OLS) and Suomi National Polar-orbiting Partnership Visible Infrared Imaging Radiometer Suite (SNPP-VIIRS) data are valuable records of nighttime lights (NTLs) in analyzing socioeconomic development. However, inconsistencies between these data have severely restricted long time-series analyses. Published time-series NTL data sets are not widely available or accurate because the DMSP-OLS calibration is inadequate and some missing data in the SNPP-VIIRS data are seldom considered for patching. To address these issues, we calibrated DMSP-OLS data (1992–2013) by using a quadratic model based on a “pseudo-invariant pixel” method. Thereafter, an exponential smoothing model was used to predict and patch missing data in the monthly SNPP-VIIRS data (2013–2019). Outliers and noise were also removed from the annual data. In addition, a sigmoid model was employed to generate improved simulated DMSP-OLS (SDMSP-OLS) data (2013–2019), which were appended with the calibrated DMSP-OLS data (1992–2013) to develop improved DMSP-OLS-like data (1992–2019) in China. Finally, we qualitatively and quantitatively compared these data with published NTL data to examine data availability. Results showed that choosing invariant pixels to calibrate DMSP-OLS data can minimize discontinuity. The correlation between the SNPP-VIIRS data synthesized by the patched monthly SNPP-VIIRS data and the official annual SNPP-VIIRS data in 2015 (
               
Click one of the above tabs to view related content.