LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Double Dictionary-Based Nonlinear Representation Model for Hyperspectral Subpixel Target Detection

Photo by ggfujyoj from unsplash

Due to the limitations of hardware technology and budget constraints, there always exists a tradeoff between spatial and spectral resolutions in a hyperspectral image (HSI). Because of the limited spatial… Click to show full abstract

Due to the limitations of hardware technology and budget constraints, there always exists a tradeoff between spatial and spectral resolutions in a hyperspectral image (HSI). Because of the limited spatial resolution, mixed pixels are a common issue in HSIs, and consequently, some targets appear as subpixels. The effectiveness of hyperspectral target detection is affected greatly by the subpixel targets, especially when the size of the targets is small. In this article, we proposed a double dictionary-based nonlinear representation model for hyperspectral subpixel target detection (DDNRTD). DDNRTD represents HSIs with a nonlinear model based on background and target dictionaries, which fully considers the spatial property of background and targets and can separate background and targets reliably, especially for small-sized subpixel targets. In addition, we designed an over-completed background dictionary construction strategy to represent the background part more effectively, which integrates spectral angle distance (SAD) with sparse representation. Experiments on two simulated and five real HSI datasets showed that the proposed DDNRTD method produced more accurate detection results than six state-of-the-art methods.

Keywords: target detection; detection; subpixel; model; representation; target

Journal Title: IEEE Transactions on Geoscience and Remote Sensing
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.