As the successors of the overdue HuanjingJianzai-1 (HJ-1) satellites and new members in Chinese Environmental Protection and Disaster Monitoring Satellite Constellation, the first two of HuanjingJianZai-2 series satellites (HJ-2 A/B)… Click to show full abstract
As the successors of the overdue HuanjingJianzai-1 (HJ-1) satellites and new members in Chinese Environmental Protection and Disaster Monitoring Satellite Constellation, the first two of HuanjingJianZai-2 series satellites (HJ-2 A/B) have been launched on September 27, 2020. Each satellite carries four sensors, including the Polarized Scanning Atmospheric Corrector (PSAC), the charge-coupled device (CCD) camera, the hyperspectral imager (HSI) and the infrared spectroradiometer (IRS). Among them, PSAC is mainly used for the monitoring of atmospheric parameters to provide data support for atmospheric environmental monitoring and atmospheric correction of data from other sensors. To test the in-orbit performance of PSAC, we develop the “day-1” aerosol and water vapor retrieval algorithms. The preliminary validation results based on ground-based observations show that the aerosol optical depth (AOD) and columnar water vapor (CWV) datasets developed based on PSAC data have high accuracy and can effectively characterize the temporal trends of AOD and CWV. The accuracy of PSAC AOD dataset is better than the expected error ±(0.05 + 0.2 * AODAERONET), and the accuracy of PSAC CWV dataset is better than the expected error ±(0.5 + 0.15 * CWVAERONET). To eliminate the negative impact of the atmosphere on CCD data and expand its application range, aerosol and water vapor data developed based on PSAC are used for atmospheric correction of CCD data. Compared with L1 CCD data, the texture details and clarity of CCD data after atmospheric correction have been significantly improved.
               
Click one of the above tabs to view related content.