High-precision monitoring of infrastructure using artificial reflectors is possible with freely available Sentinel-1 data, but large reflectors are needed. We find that a triangular trihedral corner reflector should typically have… Click to show full abstract
High-precision monitoring of infrastructure using artificial reflectors is possible with freely available Sentinel-1 data, but large reflectors are needed. We find that a triangular trihedral corner reflector should typically have at least 1-m inner leg length. As such large reflectors are often not feasible for use in urban areas for essential infrastructure monitoring, we designed a multiple corner-reflector array to replace a single corner reflector with an inner leg length of 1 m. In this case, we use four reflectors where each of them is a truncated triangular trihedral with an inner leg length of 0.33 m. We measured interferometric synthetic aperture radar (InSAR) amplitude, phase, and coherence of this reflector array with various configurations of alignments of the array. We find that as long as great care is taken in the relative positioning of the four corner reflectors, so that they constructively interfere, each horizontal or vertical configuration provides the expected amplitude, coherence, and phase stability. Applications of multiple small corner reflectors in urban areas range from essential infrastructure monitoring (e.g., bridges, overpasses, and tunnel constructions), through assessment of structural health of buildings, to monitoring highway and railway embankments. We show that the multiple corner array works when placed in a single InSAR resolution cell, but depending on the application, the number and projection of corner reflectors can be varied, as long as sufficient signal-to-clutter ratio is achieved in the area of interest.
               
Click one of the above tabs to view related content.