LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Learning Orientation Information From Frequency-Domain for Oriented Object Detection in Remote Sensing Images

Photo from wikipedia

Object detection in remote sensing images (RSIs) poses great difficulties due to arbitrary orientations, various scales, and dense location of the targets over the ground. Recent evidence suggests that encoding… Click to show full abstract

Object detection in remote sensing images (RSIs) poses great difficulties due to arbitrary orientations, various scales, and dense location of the targets over the ground. Recent evidence suggests that encoding the orientation information is of great use for training an accurate object detector for oriented object detection (OOD). In this article, we propose a new frequency-domain orientation learning (FDOL) module with two main components: the frequency-domain feature extraction (FFE) network and an orientation enhanced self-attention layer (OES-Layer). The FFE network models the interactions among spatial locations in the frequency domain to determine the frequency of spatial features. Then, these features are fed into our OES-Layer to learn the orientation information. Moreover, the orientation weights are adopted to guide the feature selection in a self-attention (SA) architecture, using them as a control gate to emphasize the spatial responses of target instances. Considering that the original similarity weights (calculated by the SA algorithm) do not distinctly model the orientation variation, the considered orientation weights provide an efficient asset to emphasize the orientation of objects. Extensive experiments on the DOTA and HRSC2016 datasets demonstrate that our method achieves state-of-the-art performance among single-scale methods while achieving competitive performance over multiscale methods.

Keywords: frequency domain; remote sensing; orientation information; frequency; orientation; object detection

Journal Title: IEEE Transactions on Geoscience and Remote Sensing
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.