LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Joint Nonlocal, Spectral, and Similarity Low-Rank Priors for Hyperspectral–Multispectral Image Fusion

Photo by usgs from unsplash

The fusion of a low-spatial-and-high-spectral resolution hyperspectral image (HSI) with a high-spatial-and-low-spectral resolution multispectral image (MSI) allows synthesizing a high-resolution image (HRI), supporting remote sensing applications, such as disaster management,… Click to show full abstract

The fusion of a low-spatial-and-high-spectral resolution hyperspectral image (HSI) with a high-spatial-and-low-spectral resolution multispectral image (MSI) allows synthesizing a high-resolution image (HRI), supporting remote sensing applications, such as disaster management, material identification, and precision agriculture. Unlike existing variational methods using low-rank regularizations separately, we present an HSI-MSI fusion method promoting various low-rank regularizations jointly. Our method refines the HRI spatial and spectral correlations from the individual HSI and MSI data through the proper plug-and-play (PnP) of a nonlocal patch-based denoiser in the alternating direction method of multipliers (ADMM). Notably, we consider the nonlocal self-similarity, the spectral low-rank, and introduce a rank-one similarity prior. Furthermore, we demonstrate via an extensive empirical study that the rank-one similarity prior is an inherent characteristic of the HRI. Simulations over standard benchmark datasets show the effectiveness of the proposed HSI-MSI fusion outperforming state-of-the-art methods, particularly in recovering low-contrast areas.

Keywords: fusion; low rank; multispectral image; similarity

Journal Title: IEEE Transactions on Geoscience and Remote Sensing
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.