LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Intercomparison of Electromagnetic Scattering Models for Delay-Doppler Maps Along a CYGNSS Land Track With Topography

Photo from wikipedia

A comparison of three different electromagnetic scattering models for land surface delay-Doppler maps (DDMs) obtained from global navigation satellite system reflectometry (GNSS-R) along a Cyclone Global Navigation Satellite System (CYGNSS)… Click to show full abstract

A comparison of three different electromagnetic scattering models for land surface delay-Doppler maps (DDMs) obtained from global navigation satellite system reflectometry (GNSS-R) along a Cyclone Global Navigation Satellite System (CYGNSS) track in the San Luis Valley, Colorado, USA, is presented. The three models are the analytical Kirchhoff solutions (AKS), the Soil And VEgetation Reflection Simulator (SAVERS), and the improved geometrical optics with topography (IGOT). Common inputs to the three models were defined by using field samples of soil moisture and texture, soil surface roughness measurements, and a digital elevation model (DEM). The resulting peak reflectivity profiles of the models and the CYGNSS data all had a range of 10 dB along the selected track, mainly due to the influence of topography. The reflectivities obtained from all three models agreed with one another within 2.4 dB along the full length of the track. The models also showed general agreement with the corresponding CYGNSS data, although the modeled profiles were higher than CYGNSS Science Data Record Version 3.1 by an average of 5 dB and also smoother. Additional characterization of fine-scale surface roughness is identified as an area for future work to improve model fidelity. An intercomparison of DDM structure for three selected acquisitions is also provided.

Keywords: topography; electromagnetic scattering; doppler maps; track; delay doppler; scattering models

Journal Title: IEEE Transactions on Geoscience and Remote Sensing
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.